

Now ascending towards the Grand Finale!

- A new method for measuring density waves and weighing the B ring (Matt Hedman)
- Meteoroid mass flux (Sascha Kempf)
- Rocky material in the mid-C ring (Zhimeng "ZZ" Zhang)
- Ring particles stay cool in each others' shadows (Estelle Deau)
- Shepherd moons in the main ring gaps (Joe Spitale)
- Update on "Peggy" (carl Murray)
- Planetary Ring Systems book
- Grand Finale plans

- A new method for measuring density waves and weighing the B ring (Matt Hedman)
- Meteoroid mass flux (Sascha Kempf)
- Rocky material in the mid-C ring (zhimeng "zz" zhang)
- Ring particles stay cool in each others' shadows (Estelle Deau)
- Shepherd moons in the main ring gaps (Joe Spitale)
- Update on "Peggy" (Carl Murray)
- Planetary Ring Systems book
- Grand Finale plans

Data from multiple occultations can be used to isolate signals from particular density waves.

At any given wavelength and location, we can see if the phase-shifts in the signal are consistent with a particular spiral pattern.

Slide courtesy of M. Hedman

The surface density of the B ring

- Very few density waves have been identified in the B ring
 - Very optically thick (less than 1% of light gets through it)
 - Lots of structure we don't understand gets in the way
- This method has measured the B ring's surface density at 6 different locations
- Surprisingly, the surface density is not much less than that of the A ring!
 - Wildly different optical depths, similar densities, indicates particle sizes or other particle properties are different
 - Total mass is smaller, indicates rings are likely young

Hedman and Nicholson (2016, arXiv:1601.07955)

- A new method for measuring density waves and weighing the B ring (ман недтап)
- Meteoroid mass flux (sascha Kempf)
- Rocky material in the mid-C ring (zhimeng "zz" zhang)
- Ring particles stay cool in each others' shadows (Estelle Deau)
- Shepherd moons in the main ring gaps (Joe Spitale)
- Update on "Peggy" (carl Murray)
- Planetary Ring Systems book
- Grand Finale plans

"Final" Meteoroid mass flux: CDA (Kempf, Srama, Altobelli)

estimate, but new identification as KBOs implies low encounter velocity so focussed flux at rings is almost 10x higher than Voyager-era values. If ring mass is comparable to Mimas, rings are probably young. Eagerly await ring mass measurement in FPROX!!

- A new method for measuring density waves and weighing the B ring (Matt Hedman)
- Meteoroid mass flux (Sascha Kempf)
- Rocky material in the mid-C ring (zhimeng "zz" zhang)
- Ring particles stay cool in each others' shadows (Estelle Deau)
- Shepherd moons in the main ring gaps (Joe Spitale)
- Update on "Peggy" (Carl Murray)
- Planetary Ring Systems book
- Grand Finale plans

Radio images of Saturn's rings

Processing and calibration of radio images

BEFORE

AFTER

Radio images of Saturn's rings

- A and B rings consistent with reflected light from Saturn
- C ring requires thermal emission

Baseline non-icy material, due to meteoroid flux?

- A new method for measuring density waves and weighing the B ring (Matt Hedman)
- Meteoroid mass flux (Sascha Kempf)
- Rocky material in the mid-C ring (Zhimeng "ZZ" Zhang)
- Ring particles stay cool in each others' shadows (Estelle Deau)
- Shepherd moons in the main ring gaps (Joe Spitale)
- Update on "Peggy" (Carl Murray)
- Planetary Ring Systems book
- Grand Finale plans

Shadows cool ring particles

- "Opposition Effect": Target is brighter when the Sun is directly behind you
 - Partly because you see only sunlit faces; shadows are hidden
 - Partly because of quantum interactions between in-going and out-going photons
- Shadow-hiding plays a role: Ring particle temperatures (per thermal infrared) correlate with shadow models

Figures courtesy E. Deau

- A new method for measuring density waves and weighing the B ring (Matt Hedman)
- Meteoroid mass flux (Sascha Kempf)
- Rocky material in the mid-C ring (zhimeng "zz" zhang)
- Ring particles stay cool in each others' shadows (Estelle Deau)
- Shepherd moons in the main ring gaps (Joe Spitale)
- Update on "Peggy" (Carl Murray)
- Planetary Ring Systems book
- Grand Finale plans

Do the gaps have shepherds?

- An embedded moon is the simplest way we know to hold open a gap in the rings
- Cassini campaign to image gaps, find shepherd moons

The moon Pan in the Encke Gap

The Cassini Division has many gaps

List of newly discovered shepherds

- A new method for measuring density waves and weighing the B ring (Matt Hedman)
- Meteoroid mass flux (sascha Kempf)
- Rocky material in the mid-C ring (zhimeng "zz" zhang)
- Ring particles stay cool in each others' shadows (Estelle Deau)
- Shepherd moons in the main ring gaps (Joe Spitale)
- Update on "Peggy" (carl Murray)
- Planetary Ring Systems book
- Grand Finale plans

- A new method for measuring density waves and weighing the B ring (Matt Hedman)
- Meteoroid mass flux (sascha Kempf)
- Rocky material in the mid-C ring (Zhimeng "ZZ" Zhang)
- Ring particles stay cool in each others' shadows (Estelle Deau)
- Shepherd moons in the main ring gaps (Joe Spitale)
- Update on "Peggy" (Carl Murray)
- Planetary Ring Systems book
- Grand Finale plans

Planetary Ring Systems

- Publisher: Cambridge University Press
 Editors: Matthew Tiscareno and Carl Murray
 Advisory Board: J. Burns, J. Cuzzi, L. Esposito, P. Nicholson
- Definitive scholarly book, aiming to succeed the classic book edited by Greenberg and Brahic (1984)
- Scope includes all rings systems, not just Saturn
 - Most chapters to focus on ring types or characteristics in a way that cuts across the known ring-bearing planet systems
- Time frame
 - To be published this winter
 - Tentative plan: 2nd edition ~2020
- 650 pp, B/W figures in the text w/color plates in the back

Planetary Ring Systems

Part I: Introductory Material

- Space Age Studies of Planetary Ring Systems (Esposito)
- 2. Introduction to Planetary Ring Dynamics (Hedman)

Part II: Ring Systems by Location

- 3. The Rings of Saturn (Cuzzi)
- 4. The Rings of Uranus (Nicholson)
- 5. The Rings of Neptune (dePater/Showalter)
- 6. The Rings of Jupiter (Hamilton)
- 7. Ring Systems Beyond the Giant Planets (Sicardy)

Part III: Ring Systems by Type and Topic

- 8. Dynamical Theories of Perturbed Dense Rings (Stewart)
- 9. Embedded Moonlets in Dense Rings (Spahn)
- 10. Meteoroid Bombardment and Ballistic Transport in Planetary Rings (Estrada)
- 11. Theory of Narrow Rings and Sharp Edges (Longaretti)

- 12. Narrow Rings, Gaps, and Sharp Edges (Nicholson)
- 13. Dusty Rings (Hedman)
- 14. The F Ring (Murray)
- 15. Plasma, Neutral Atmosphere, and Energetic Radiation Environments of Planetary Rings (Cooper)
- 16. Thermal Properties of Planetary Rings (L. Spilker)
- 17. Computer Simulations of Planetary Rings (Salo)
- 18. Laboratory Studies of Planetary Rings (Colwell)
- 19. The Age and Origins of Planetary Ring Systems (Charnoz)

Part IV: Concluding Material

- 20. Future Missions to Planetary Ring Systems (T. Spilker)
- 21. Planetary Rings and Other Disks (Latter)
- 22. The Future of Planetary Rings Studies (Tiscareno/Murray)

http://planetaryringsystems.astro.cornell.edu

- A new method for measuring density waves and weighing the B ring (Matt Hedman)
- Meteoroid mass flux (Sascha Kempf)
- Rocky material in the mid-C ring (zhimeng "zz" zhang)
- Ring particles stay cool in each others' shadows (Estelle Deau)
- Shepherd moons in the main ring gaps (Joe Spitale)
- Update on "Peggy" (Carl Murray)
- Planetary Ring Systems book
- Grand Finale plans

Grand Finale

- High-resolution radial scan
- Will build up coverage over multiple passes

Grand Finale

- Super high-res images of interesting ring structure
 - Propeller Belts

- Viscous overstability
- Density wave "straw"C ring plateaus
- Retargetting known propellers at ~0.5 km/px